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I. Introduction 
 

The study of morphology allows us to understand the process by which words are 
formed. Implicit in that pursuit is the desire for a psychologically reflective method of explaining 
word formation: we seek to understand not only the word-formation processes but the cognitive 
patterns that underpin them. As we consider this, we learn about the nature of accessing words 
from our lexicon.  

 

II. Literature Review and Explanation of Morphological Pattern 
A. The Lexicon 

The lexicon can be considered an ‘internal dictionary.’ That is, the lexicon is a mental list 
of words that can be accessed by a speaker to express ideas, usually in sentences. In the attempt 
to have a psychologically reflective model of morphology, we want to understand what elements 
exist in the lexicon: There is a continuum of representations of the lexicon.  

One may consider a lexicon comprising entirely of morphemes. Some of these 
morphemes will be free – they do not need concatenation and can be expressed along, such as the 
verb ‘do.’ A native English speaker is comfortable with this word being used alone. Other 
morphemes are bound: they cannot be found (in standard context) on their own. An example 
would be the English ‘un- ‘prefix, which must be attached to another constituent. In this 
framework, a morpheme-based lexicon model, the lexicon consists of morphemes assembled into 
words – there is no preexisting construction. While this would be a convenient model for 
constructing a hierarchal view of language (phonemes create morphemes, which create words, 
which create sentences), it demands a high level of saliency of morphemic boundaries, which are 
not guaranteed to be present in analytical languages as much as in synthetic/agglutinative ones.  

 Contrastively, it could be that the lexicon is composed of very preconstructed words that 
the morpheme-based model does not permit. This would be a word-based model of the lexicon. 
Adopting this model suggests that speakers have a list of words that hold no morphemic 
boundaries – save for semantic processes – and access the words wholly. This would require a 
speaker's memory to be highly adept at recalling words as a whole, and does not explain the 
phenomena of novel constructions – there is no account for parsing new words, which speakers 
can clearly do. 



Haspelmath & Sims (2010) offer a mediating position 
between these two models: moderate word-based lexicon. This 
offers those processes relating to both lexicon models at work. 
Some words are accessed directly, while others are formed and 
accessed as a whole. This allows for a more flexible approach 
that is still able to account for experimental results and make 
theoretical predictions. Researchers in this area have termed the 
process of accessing the word wholly as the direct route (from 
the word-based model) and composite route (reflective of the 
morpheme-based modes.) (Haspelmath & Sims, 2010; Jennifer 
Hay, 2001; Taft & Forster, 1975)  

B. Lexical Access Routes 

The conditions that affect the election of these two routes 
are of interest because they aid morphology in being 
psychologically reflective of speakers' thinking. Consider 
Example 1; Hay (2001) suggests that it would be natural for the morpheme in- to exist 
independently of any base in the lexicon. Thus, when the speaker wishes to produce the word 
‘insane,’ they simply need to combine it with the base ‘sane’. However, assuming this is the case 
may not always be accurate. In more synthetic words (and indeed languages), these words may 
exist as complete, preconstructed units. Consider Example 2: Taft and Forster (1975) suggest that 
the word ‘unremittingly’ may need to be accessed as a complete word due to its complexity and 
the fact that ‘mit’ (in the core meaning used here) would not have much meaning, and probably 

not be stored independently. 

C. Lexical Access Route Influences 

Segmentability and allomorphy influence the access route (Haspelmath & Sims, 2010).  
Naturally, the more familiar the speaker is with morphology, and the more salient the 
morphological constituents are, the more segmentable the word is likely to be. This would lead 
to an increase in composition route access. If the composition of the word contains allomorphic 
variances, the saliency of the constituents would decrease, suggesting a direct access route is 
being implemented. It has also been posited that there is a saliency of bases, and speakers more 
readily identify real bases than fake ones, suggesting that the base morphemes are stored 
individually (Taft & Forster, 1975).  

More recently, Hay has argued that the lexical access route has a social component. It 
seems that the speaker is making the election based on the social domain of the discourse, as well 

Figure 1. A schematic of 
the two methods of lexical 
access.(Jennifer Hay, 
2001) 

in-sane 
NEG-sane 
‘insane’ 

un-re-mit-ing-ly 
NEG-REP-mit-PRS-ADV 
‘unremittingly’ 

Example 1 & 2. Examples of readily decomposed words that may be accessed 
in multiple ways. (Jennifer Hay, 2001; Taft & Forster, 1975) 



as the gauged status of the speaker (J. Hay, Walker, Sanchez, & Thompson, 2019). They argue 
that the lexicon contains social elements or notes that will influence access routes.   

The influence most relevant to this project is the relative frequency of the base morpheme 
and the complex word. It has been suggested that, with other factors equal, if the complex word 
is of higher frequency than its simpler base, it will be accessed directly (Jennifer Hay, 2001). 
This project is an extension of this research.  

D. Semantic Transparency 

In the 2001 investigation, Hay appeals to semantic transparency: it is suggested that the 
more semantically transparent a word is, the more likely it is to be accessed via the composite 
route. The less the complex word has undergone semantic drift, the more likely it is to have a 
directly relational meaning to the base word. Because of this, speakers would conceive of the 
base word and then concatenate the affix to achieve the desired output – which is the composite 
route. In contrast, words that do (now) differ greatly in their meaning, even if they are related 
morphologically to one another, are more likely to be accessed directly. This is because, without 
the aspect of semantic transparency, there is a lower chance for the speaker to associate those 
two words.  

 To determine the level of semantic transparency, Hay (2001) investigated the presence of 
the base word of the complex (comprising of multiple morphemes) word in the dictionary entry 
of the complex word itself and conducted a binary classification (the base was present or not 
present in the definition of the complex word). This provides a useful metric for determining 
semantic transparency: if the complex word is a simpler extension of the base (even if it is a 
negation, the complex is still highly related to the base), then it would be reasonable to assume 
that the base would be present in the definition of the complex word. This approach is subject to 
fluctuations in particular dictionary entries. Further, the binary classification may coarse some 
details in the rest of the study.  

The research presented here is an extension of this idea: a computational approach to 
understanding the effects of semantic transparency lexical access routes. The assertion is that by 
using novel computational tools, there will be a higher degree of nuance in the usage of semantic 
transparency, which would be a more rigorous metric of semantic transparency. Because it has 
been established that there is a relation in relative frequency to the lexical access route, we are 
seeking a computational model that is able to predict the relative frequency of a base to its 
complex form. This, in turn, will provide a lexical access prediction. 

E. Computational Models of Semantic Representation 

With the dawn of several computational methods that are applicable to linguistics, such 
as word2vec, neural embeddings, and semantic analysis, there are novel ways to investigate 
semantic transparency. The word2vec algorithm seeks to translate a word into some 
multidimensional vector (Mikolov, Chen, Corrado, & Dean, 2013; Mikolov, Sutskever, Chen, 
Corrado, & Dean, 2013). This family of algorithms utilizes words that co-occur with the word in 



question to determine its position in a high-dimensional vector space. This is thought to be a 
semantic space for the vector, in which meaning can be extrapolated from relative position. 

When this is done for thousands of words, it is suggested that there will be relationships 
formed between these words that reflect their semantic meanings. The input to a word2vec model 
is a corpus. The corpora can hold billions of words. By moving a sliding window over these 
words, and performing statistical transformations to accounts for type-frequency and document 
frequency, a multi-dimensional array is the output. A shallow neural network is implemented 
through which the corpus passes. The resulting vectors, or embeddings, provide linguistics with a 
computational avenue for analyzing and predicting linguistic phenomena, based off of a model 
for semantics. More details on the corpora and metrics are discussed in the Methods section. 

Research has been conducted in the area of segmenting words into constituent 
morphemes. In the past, these have been based on probabilistic frameworks. (Creutz & Lagus, 
2007; Galinsky, Kovalenko, Yakovleva, & Filchenkov, 2018). The strategy has been to create 
(literally) a morpheme-based lexicon. These probabilistic models have been extended to more 
sophisticated approaches  (Sorokin, 2022). This work centers around leveraging the (relatively) 
novel transformer  (Vaswani et al., 2017) – based BERT architecture (Devlin, Chang, Lee, & 
Toutanova, 2019) to create a morpheme embedding. While this project is not directly related to 
morpheme segmentation, it is important to understand that the work is being done.  

III. Research Questions 

 This research investigates methods of predicting the lexical access route by associating 
relative frequency semantic similarity based on semantic embedding. This will extend the 
knowledge already present in the field (Libben & Jarema, 2002) by providing researchers with a 
reliable and replicable computational methodology for predicting, based on the semantics of a 
word (as provided by word2vec), whether speakers will access that word by the direct route or 
the composite route. It is also a direct extension of Hay’s (2001) notion of semantic transparency. 

Results here are interesting in the fields of linguistics, morphology, psychology, cognitive 
science, and computational linguistics because they will provide both insights into the elements 
of the lexicon, and inform computational representations of the lexicon for applications across 
the (computational) linguistics spectrum. Further, results will increase the parallels between 
formal descriptions of morphological processes and the psychological procedures they are 
describing. 

 Therefore, the central research goal is to determine if the word2vec family of semantic 
embedding algorithms can be combined with a measure of semantic distance to accurately 
predict lexical access routes. This will require the answering of the following research questions: 

• What is an appropriate corpus to utilize for predicting lexical access routes? 
• What metric of distance embedding allows for the detection lexical access routes? 
• What are the predictions made by combining the preferred corpora + metric pairing? 



Results of experiments found Hay (2001) will be utilized to compare the results found in this 
investigation. (Details on the experiment were provided for this investigation so that they can be 
recreated in this computational counterpart.) 

 It is predicted that there will be a suitable metric and corpus pairing that allows for the 
accurate prediction of lexical access routes. Indeed, the goal of semantic embeddings is to 
accurately reflect the meaning of a word relative to other words. With the increasing number of 
corpora, finding suitable data is not expected to be an issue. Further, there has been research into 
improving various word2vec algorithm, and the distance metrics are very accessible. With these 
in mind and regarding predictions, therefore, when controlling for the meaning of a morpheme 
addition, it is expected that there is a way to capture the severity of this change in meaning, 
allowing for predictability in accordance with Hay (2001): the greater the semantic distance, the 
lower the semantic transparency, the greater the relative frequency of the base to the complex, 
the greater probability of being accessed directly.  

 

IV. Methods 

This section outlines the methods for creating the list of words to investigate, the creation of 
the computational models, and the metrics utilized to determine similarity. 

A. Dataset 

Hay (2001) provides the list of words that were utilized in the experiment. These words were 
tagged for relevant parts of speech. Note, in the case that the word could be multiple parts of 
speech, the one that was most common was used. Eg: list NOUN listless ADJ. Also, the meaning 
of the word that was captured in both entries was utilized.  Eg: perfect ADJ impefect ADJ, even 
though perfect may be used as a verb. This is indeed a reference to semantic transparency, 
however, allowing for the creative and uncommon uses of the word to determine part of speech 
would not reflect in a model, which is of course an approximation. Also, it was the case that the 
more natural part of speech classification was more common.  

B. Corpora 

Five corpora were utilized for this study. Three were facilitated by the Python programming 
library spaCy (M. Honnibal, 2020). The smallest of the three en_core_web_sm contained a 
large corpus from various genres of text: news, conversational telephone speech, weblog, 
newsgroups, broadcasts, and talk shows (Ralph Weischedel, 2013). About 625,000 English 
words were included total.  Also used was en_core_web_md. This contains the same 
elements as the previous, and has the addition data from Wikipedia (Tiedemann, 2016; 
Wikimedia.org, 2016), OpenSubtitles (Tiedemann, 2016; Tom Kocmi, 2022), WMT Newscrawl 
(Tom Kocmi, 2022), and OSCAR 21.09 (Pedro Ortiz Suarez, 2019). This contains over 8 million 
English tokens. The largest of the three corpora accessed through spaCy is  en_core_web_lg, 
which includes over ten times as much data, so can be thought of as an expansion. These corpora 
will be referred to as spaCy Small, spaCy Medium, and spacy Large. 



To diversify the corpora included, the gensim library in python was also utilized (R 
Rehuvrek, 2010). Two corpora were harnessed with this library: a corpus of google news articles, 
the Google News dataset of about 100 billion words (Google, 2013), and a Twitter corpus of 2 
billion tweets, with 27 billion tokens (J Pennington, 2014). These will be referenced as google 
and twitter respectively. Note that the corpus trained the models which were then 
downloaded for this investigation.  

C. Distance Metrics 

Three options were investigated for distance metrics. When working with semantic 
embeddings, the similarity metric provides a way to compare two vectorized words. That is, the 
closer in semantic meaning the words are, the closer they will be in the space. This follows from 
the discussion of semantic embeddings. Therefore, a metric that is accurately able to assess 
similarity would be a powerful tool. It is standard to 
compare human intuition to the similarity metric to 
determine this accuracy.  

In this investigation, the first metric considered is 
cosine similarity. This is one of the most common 
metrics utilized in NLP, Machine Learning, as well as 
any field that utilized multidimensional spaces. This is 
because it is attuned to small fluctuations, and is 
computationally efficient to compute. The equation for cosine similarity is 
given in Equation 1: the dot-product of two vectors, divided by the product of 
their magnitude. This is highly useful because it captures the difference in 
angle between the two vectors in question, as shown in Figure 2. The greater 
the cosine similarity, the closer the vectors are, and therefore closer the words 
are thought to be.  

 The second metric used is Minkowski Distance. This is a 
generalization of the Euclidean distance. With two dimensions (n = 
2) and p = 2, this is the Pythagorean Theorem. In the case here, we 

will see that it extends the notion of Euclidean 
(flat plane) distance to the multi-dimensional space that the semantic 

embedding exists in.  

Finally, the Jaccard Index (Jaccard Similarity, 
Jaccard Distance) is a metric for determining the distance for 
two sets. While it is indeed being used here to determine 
similarity between two vectors, the same notion will apply: it 

determines the ratio of overlapping in the 
multidimensional space to union of space occupied by 
both vectors. This is a natural metric for studying 
semantic distances because it reflects natural overlap 

between two vectors.  

Equation 1. Cosine Similarity 

Figure 2. Costine Similarity in 2D space. 

Equation 2. Minkowski Distance, D 

Figure 4. Minkowkski Distance 
(Representing Multiple Dimensions) 

Figure 3. Jaccard Index 

Equation 3. Jaccard Index (Set Notation) 



Figure 5.  

The cosine similarity we implemented with the native architecture of spaCy and genism. The 
Minkowski Distance and Jaccard index were implemented with scikit learn. (Pedregosa, 2011). 
Cosine similarity and the Jaccard Index range from 0 to 1, with greater values being more 
similar, and the Minkowski distance ranges from 0 (most similar, because of least distance) to 
infinity. It is good to include these two kinds of ranges because it diversifies the metrics.  

 

V. Results 
 
Recall that the goal of this investigation was do determine an appropriate/useful corpus-

metric pairing of semantic similarity for predicting lexical access routes, via relative frequency. 
This is an extension of Hay’ (2001) notion of semantic transparency. Initially the results did not 
provide much of a pattern: there was no strong signal for determining if a base word had a higher 
frequency than the complex word from the semantic similarity.  

 
 To investigate deeper, a delineation was made and two categories are proposed: cases where 

the complex word is a different word-class (part of speech) from the base word. When this 
separation is made, there does appear to be patterns. A series of two-way ANOVA were 
conducted to determine if there is significant difference semantic similarity between the base 
word and the complex word, under the influence of the two variables: if the Base Frequency is 
greater than the Complex Frequency, and if the Complex wordform is of a different word class. 
Table 1 provides the p-values of each of the distance metrics, and the corresponding factors, for 
each corpus used.  

 
Table 1. P-values of Corpus + Metric Pairing, reflecting ability to differentiate features.   

 
 

While there are a few cases of one of the factors appearing to make a difference in semantic 
similarity, it appears that using the cosine similarity metric on embedding form the Spacy Small 
corpus yields low p-values, suggesting that this pairing would be a valuable candidate for trying to 

 Cosine Similarity Minkowski Distance Jaccard Index  
Ch. WC B > C Ch. WC B > C Ch. WC B >C 

Spacy 
Small <0.0001 <0.01 <0.0001 0.13 0.038 0.361 

Spacy 
Medium 0.13 0.016 0.043 0.172 0.057 0.037 

Spacy 
Large 0.025 0.359 0.031 0.162 0.333 0.395 

Google 0.745 0.591 0.239 0.312 0.309 0.875 

Twitter 0.871 0.639 0.950 0.824 0.038 0.362 



predict relative frequency. This suggestion is based on the indication that there is a difference 
similarity across the two factors. 

 
Figure 5 is a plot of the similarity and 

relative frequency. Note that each marker is a 
base-complex word pairing. There appears to be a 
general positive linear trend: as the similarity 
increases is seems that the relative frequency 
increases: the base becomes more frequent that 
the complex. The trend lines indicate the linear 
regression model that was determined from these 
data. These models are summarized below in 
Table 2. 

 
Table 2. Summary of Linear Models 

MODEL N COEF. 95% CI ST. ERR. F P R2 
CHANGE WC 28 1.2383 [0.613, 1.864] 0.305 16.50 0.0003 0.379 
NO CHANGE WV 27 0.3782 [-0.105, 0.861] 0.235 2.589 0.120 0.091 

  
 

VI. Discussion 
 
The results of this investigation do support a model of predictive relative frequency from 

semantic similarity. As the base-complex word pair becomes closer in semantic similarity, we see an 
increase in the base frequency relative to the complex frequency. This is congruent with the 
expectations. As we are utilizing semantic similarity metrics in embeddings as a model for semantic 
transparency, we see that that more semantically similar (transparent) the base-complex word pairs 
are, the more frequency the base is relative to the complex. This in turn predicts lexical access via the 
composition route, just as Hay (2001) suggests.  

 
The model is reliable for the cases complex word form is of another word class. Indeed, there 

does not appear to be a significant relationship to infer a relationship in the cases where word class 
was not altered. However, regarding the change in word class, note that Figure 5 does appear to 
capture the intuition that preserving word class in creating the complex word form does correlate 
with an increase in semantic similarity. Indeed, the average similarity (spaCy Small Corpus + Cosine 
Similarity) for cases with changing word-class is 0.34 compared to 0.67 when there is not this 
change. 
 

An important note about the results is regarding the similarity metrics. When we consider the 
high dimensionality of the embedding space, the overall distance that a complex word may differ 
from the base word is small, compared to the hundreds of other dimensions. The resulted in very high 
similarity metrics (almost 1.0 in many cases) for the Minkowski and Jaccard metrics. While there 
was occasionally an ability to distinguish certain feature (if the base frequency is greater than 
complex frequency and if the complex word is in a different word class), because of the low 
variance, it is reasonable to conclude the some of the results were truncated by precision limitations 
of the libraries and computer used for the investigation.  
 



It is interesting that the spaCy small corpus is the only corpus to show significant delineation 
across both features. This is especially interesting because spaCy medium is an extension of spaCy 
small (it contains all of spaCy small) and further, spaCy large is an extension of both. It is possible 
that the larger corpora are more susceptible to noise, similar to how the Minkowski and Jaccard 
metrics had the signals obfuscated by the high dimensionality of the embedding space. But this does 
not necessarily align with the intuition that with a more robust corpus, we would see a convergence 
to a particular conclusion. 
 

Recall the research questions posed:  
• What is an appropriate corpus to utilize for predicting lexical access routes? 
• What metric of distance embedding allows for the detection lexical access routes? 
• What are the predictions made by combining the preferred corpora + metric pairing?  

 
 

It seems that the word2vec algorithm conducted on the spaCy Small corpus results in a useful 
embedding for this investigation. It may not be the case that it is the only corpus to do this, and as 
discussed, invites questions as to why it is the case. The cosine similarity is, predictable, adept at 
measuring semantic transparency as it relates to relative frequency. This is because it is highly fined 
tuned to the fluctuations in position. 

 
From the pairing of these two, it is suggested that there can be predictions made regarding lexical 

access route from similarity metrics made with semantic embeddings. This is an extension of the role 
of semantic transparency, which also acts as predictor for lexical access. The specific prediction is 
that as similarity increases, there is an increase in base frequency relative to complex frequency, 
again support the selection to access the complex word via the composition route. 

 
VII. Future Research 
 
As this investigation was a direct extension of the Hay’s (2001) study, many decisions were 

made or predetermined. These decisions were primarily focused on the word list. Hay (2001) utilized 
58 words (3 here were removed because in three cases, one of the members of the base-complex pair 
was not included in the corpus). So, a natural extension would be to investigate more base-complex 
word pairs. It would be reasonable to expect different behaviors from different kinds of affixation 
processed, so grouping into classes like prefixation, suffixation, negation, would serve to refine the 
investigation helpfully. 

 
Perhaps the most significant aspect is the reliance on the token frequency of the members of the 

word list. The relative frequency was calculated from Hay’s (2001) frequency, which was founded 
on the CELEX corpus. (Baayen, Gulikers, Piepenbrock, Centre for Lexical, & Max Planck Instituut 
voor, 1995). It could be that the corpora used in this investigation do not reflect the same or similar 
frequency, which may alter the results. Indeed, comparing corpora across linguistic domains is 
known to create variation in results. (Kanwit, 2021) Therefore, a very positive next step would be to 
investigate this with intra-corpus frequency, and further, comparing the frequencies would be 
important as well.  

 
Looking at the resulting plot in Figure 5 it may seem that there is more than just a linear pattern. 

The linear regression modeled utilized to report the findings, could readily be extended. There are 
specialized clustering models and more sophisticated grouping mechanism that may be able to be 



leveraged to refine the scope of predictability. It may even be possible to have neural network layers 
added to the embedding architecture that can be used to specifically predict lexical access route 
directly, rather than just demonstrate prediction of relative frequency.  

 
With respect to the specific predictions made by semantic transparency, an important next 

step would be to conduct experiments to ascertain lexical access predictions. The Hay (2001) study 
that this project extends does this. However, those data were not explicitly given, but relative 
frequency was, so it was chosen to be the variable to serve as a target to predict. But there are 
certainly predictions made here that could be tested with a routine test of providing native speakers 
with words and determining the parsing rate or reading speed of words and determining if that 
positive correlation of semantic similarity and access via the composition route continues.  

 
 

VIII. Conclusions 
 

The primary morphological phenomenon under investigation here is lexical access route 
selection. As Hay (2001) puts forth this competing model, the appeal semantic transparency is 
offered as a means to augment relative frequency.  In this current investigation, the notion of 
semantic transparency is captured in semantic similarity, found by semantic embeddings. The 
predictions from the previous study are supported.  

 
The limitations of the study are primarily related to word choice and reliance on frequency data 

form Hay (2001). There fact that the frequency data was not intertwined with the semantic 
embedding data could affect the results here. The goal with corpus linguistics and semantic 
embeddings would be to have it be the case that there is no dependence on an individual corpus, I am 
certainly an import limitation of the work here. Further, there is a strong case for interpreting the 
resulting without the linear model, and removing the idea of predictions. Rather we may consider 
semantic similarity as a simple augmentation to relative frequency in determining lexical access 
routes. This is brough most to light by the fact that the experimental data were not utilized here.  

 
A useful interpretation of this morphological phenomena is that speakers utilize the meaning of a 

base-complex word pairing when accessing their lexicon. If the complex counterpart has a more 
transparent meaning, there is thought to be an increased selection of the composition route. This 
investigation has provided a computational way of corroborating this theory. The model put forth 
related semantic similarity to relative frequency, and uses that to make a prediction of lexical access 
routes.  Because the model is predicated on semantic dimensions, it could be a valuable tool because 
we could intuit a certain ‘dimension’ that is traversed by creating the complex word form the base 
word. This then suggests a validity to the model: what we are capturing is traversal of this dimension,  
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Appendix. 

Below are resulting data from this investigation, with the corpus + metric pairing as the column 
header:  

 

 

Base Words Complex Words Base POS Complex POS Base Freq Complex Freq Rel Freq log(Rel F) spaCySM_COS spaCyMd_COS spaCyLg_COS twitter_COS google_COS spaCySM_MIN spaCyMd_MIN spaCyLg_MIN twitter_MIN google_MIN spaCySM_JAC spaCyMd_JAC spaCyLg_JAC twitter_JAC google_JAC
couth uncouth ADJ ADJ 2 34 0.058823529 -1.230448921 0.473711983 0.015359628 0.626523159 0.3337852 0.4953191 7.818833828 72.87664795 18.88362122 5.870859146 2.779042721 1 1 1 1 1
mutable immutable ADJ ADJ 4 40 0.1 -1 0.711687182 0.999999984 0.873206973 0.4635941 0.5291927 6.502598763 0 20.5240078 5.396452904 3.206757069 1 0 1 1 1
animate inanimate ADJ ADJ 4 34 0.117647059 -0.929418926 0.674140102 1.000000071 0.850202871 0.2201768 0.49537197 6.783192635 0 19.64858246 6.328373909 3.187576532 1 0 1 1 1
scruff scruffy NOUN ADJ 7 42 0.166666667 -0.77815125 0.305651089 0.571636989 0.825750182 0.7165928 0.34034416 9.306271553 35.36585617 11.04666328 3.963967323 4.297562599 1 1 1 1 0.996666667
mobile immobile ADJ ADJ 11 55 0.2 -0.698970004 0.636452974 0.999999942 0.649277032 0.15965669 0.14074576 6.693105698 0 34.47269821 6.924239159 3.916531563 1 0 1 1 0.996666667
exact exactly VERB ADV 532 2535 0.209861933 -0.678066331 0.245672666 0.725937286 0.725937286 0.75309664 0.596412 10.01514912 31.32122803 31.32122803 3.865584373 2.314585209 1 1 1 1 0.996666667
canny uncanny ADJ ADJ 20 89 0.224719101 -0.648360011 0.673959261 0.553700354 0.544599635 0.35243234 0.37957215 5.992546082 30.35396004 25.88967133 6.754140377 3.411348104 1 1 1 1 0.996666667
leash unleash VERB VERB 16 54 0.296296296 -0.528273777 0.774598144 0.075888741 0.224440298 0.24398857 0.13694629 5.686510563 55.68616104 44.32323837 6.523563385 4.480111122 1 1 1 1 1
vamp revamp NOUN NOUN 4 13 0.307692308 -0.511883361 0.481641842 -0.070010258 0.145334598 0.06322495 0.029695999 7.739679337 49.5295639 32.80180359 6.714096546 4.317526817 1 1 1 1 1
audible inaudible ADJ ADJ 100 292 0.342465753 -0.465382851 0.616800179 0.438022093 0.850545097 0.4934836 0.40217108 7.515321732 51.62599564 22.08394051 5.111028671 3.371095657 1 1 1 1 1
frequent frequently ADJ ADV 396 1036 0.382239382 -0.417664569 0.159030689 0.789902855 0.789902855 0.5976107 0.6497709 11.69923401 23.36991119 23.36991119 4.763568401 2.152412891 1 1 1 1 1
list listless NOUN ADJ 19 42 0.452380952 -0.344495689 0.197095204 0.203777461 0.437809555 -0.19776641 -0.054619763 9.689188004 70.72164154 63.72740173 7.533518791 4.507861137 1 1 1 1 1
mortal immortal ADJ ADJ 53 112 0.473214286 -0.324942153 0.753360269 0.760026151 0.760026151 0.39211228 0.5565232 5.8262887 21.91371346 21.91371346 5.971897602 2.779873371 1 1 1 1 1
patient impatient ADJ ADJ 114 227 0.502202643 -0.299121006 0.836591291 1.000000045 0.745050651 0.4766648 0.14989424 4.366622448 0 32.25460434 6.019310474 3.794145584 1 0 1 1 1
slime slimy NOUN NOUN 35 61 0.573770492 -0.241261791 0.44990498 0.398588555 0.757844852 0.3384686 0.6539536 7.530131817 33.51640701 20.94417381 5.86784029 2.654242992 1 1 1 1 1
hap hapless NOUN ADJ 13 22 0.590909091 -0.228479329 0.421934881 0.025083708 0.166296783 -0.012590471 0.20454262 7.870604992 60.64952087 24.25855064 6.543660641 3.200767756 1 1 1 1 1
legible illegible ADJ ADJ 10 14 0.714285714 -0.146128036 0.655937874 0.392646254 0.820389652 0.6094908 0.640687 6.696669102 36.3938179 20.07537842 4.225058079 3.157741308 1 1 1 1 0.993333333
virile virility ADJ NOUN 31 41 0.756097561 -0.121422163 0.32052624 0.156950483 0.36461354 0.27348202 0.5052413 8.628779411 45.71512604 29.43105316 7.679798126 3.592562914 1 1 1 1 1
align alignment VERB NOUN 44 57 0.771929825 -0.112422179 0.434639302 0.547905172 0.547905172 0.46956068 0.52094007 8.809389114 41.936409 41.936409 5.880772114 2.958320379 1 1 1 1 0.996666667
diagonal diagonally ADJ ADV 29 36 0.805555556 -0.093904503 0.250325703 0.669528981 0.805625797 0.40737808 0.72704506 10.79378033 31.72219467 20.66113281 6.368923187 2.551171064 1 1 1 1 0.996666667
swift swiftly ADJ ADV 221 268 0.824626866 -0.08374252 0.322392326 0.664117624 0.664117624 0.1430488 0.5054235 10.46981525 26.35445595 26.35445595 7.216631413 2.676677465 1 1 1 1 0.996666667
equal equally ADJ ADV 1084 1303 0.831926324 -0.079915134 0.167467135 0.55690192 0.55690192 0.6529767 0.31925362 11.59091949 45.42991638 45.42991638 4.576739311 2.962029219 1 1 1 1 1
twine entwine NOUN NOUN 27 32 0.84375 -0.073786214 0.525210949 0.415341336 0.802241728 0.2980164 0.17503107 7.740995407 47.2426796 21.15901947 5.587621212 4.549292088 1 1 1 1 1
meek meekly ADJ ADV 41 47 0.872340426 -0.059314001 0.495012559 -0.077221752 0.326073036 -0.06216051 0.5409096 7.53924942 52.07958984 28.15480804 7.977952003 2.907196999 1 1 1 1 0.996666667
diligent diligently ADJ ADV 31 35 0.885714286 -0.052706351 0.118492206 0.411962468 0.789815042 0.4792214 0.58334416 11.23854828 40.89390182 18.87889481 6.359957695 2.652206182 1 1 1 1 0.99
recent recently ADJ ADV 1814 1676 1.082338902 0.034363268 0.316409741 0.694523808 0.694523808 0.66696435 0.52029103 11.1692028 37.93539047 37.93539047 4.477683067 2.055750847 1 1 1 1 0.993333333
agile agility ADJ NOUN 38 34 1.117647059 0.04830468 0.277057729 0.417970716 0.549387767 0.513019 0.60552186 9.150637627 45.14403534 40.3048172 5.295179367 3.049808264 1 1 0.996666667 1 1
direct directly VERB ADV 1472 1278 1.151799687 0.061376956 0.248962093 0.768704105 0.768704105 0.49159276 0.55068016 11.00771809 28.74817085 28.74817085 5.881885529 2.097105265 1 1 1 1 1
adequate inadequate ADJ ADJ 540 399 1.353383459 0.131420864 0.572139483 0.85035818 0.85035818 0.6046255 0.6669251 8.780157089 20.17670441 20.17670441 4.899864197 2.315942287 1 1 1 1 1
moral immoral ADJ ADJ 143 94 1.521276596 0.182208184 0.850880805 0.55696191 0.685027639 0.265902 0.41752362 4.467960358 45.74933243 40.31386566 6.890714645 3.357193708 1 1 1 1 0.996666667
adorn adornment VERB ADJ 75 41 1.829268293 0.262277407 0.532993355 0.699422789 0.336968815 0.114089586 0.39548928 8.482800484 32.86373901 39.88184357 8.035006523 3.638370037 1 1 1 1 0.996666667
general generally ADJ ADV 4624 1663 2.780517138 0.444125576 0.151666225 0.681065703 0.681065703 0.30626163 0.20057958 12.42634296 34.19142914 34.19142914 6.367324352 2.771512032 1 1 1 1 1
affected unaffected ADJ ADJ 169 54 3.12962963 0.495492945 0.657261148 0.999999995 0.896112944 0.32393596 0.61385715 6.386886597 0 23.44345474 6.440442562 2.588334799 1 0 1 1 0.996666667
puff puffy NOUN ADJ 159 48 3.3125 0.520155887 0.422849662 0.99999998 0.744467736 0.4369579 0.31916857 8.721008301 0 26.13147354 5.586453915 3.543226719 1 0 1 1 1
soft softly ADJ ADV 1464 440 3.327272727 0.5220884 0.376974362 0.585929109 0.585929109 0.42656302 0.37807295 9.839198112 46.36457062 46.36457062 6.516010284 3.222293377 1 1 1 1 1
kindle rekindle VERB VERB 41 11 3.727272727 0.571391172 0.714437097 0.129296598 0.551361037 0.07387713 0.64079165 6.166191578 50.82941437 27.09479141 8.253250122 2.776978254 1 1 1 1 1
screw unscrew NOUN VERB 187 44 4.25 0.62838893 0.275425373 0.999999983 0.768262643 0.32713297 0.51421106 10.22406292 0 29.39017105 6.423710346 3.53960681 1 0 1 1 0.993333333
woe woeful NOUN ADJ 68 14 4.857142857 0.686380877 0.275524197 0.040549769 0.18123938 0.15879224 0.39544463 9.256235123 101.6122437 37.58177567 5.518935204 3.409828424 1 1 1 1 0.996666667
liberal illiberal ADJ ADJ 55 11 5 0.698970004 0.794424948 1.00000005 0.871113866 0.26176828 0.52847385 5.195296288 0 24.19586754 5.903927326 3.129012108 1 0 1 1 1
kind unkind ADJ ADJ 390 72 5.416666667 0.733732111 0.616784411 0.348000011 0.547168573 0.37142575 0.1738415 7.587397099 52.24323654 43.49697495 6.885253906 3.284067631 1 1 1 1 1
fragile fragility ADJ NOUN 207 36 5.75 0.759667845 0.519347999 0.381490678 0.610923117 0.23166524 0.6663977 7.518525124 37.80799103 27.36410713 6.670958996 2.558635235 1 1 1 1 0.996666667
arrogant arrogantly ADJ ADV 116 17 6.823529412 0.834009068 0.313581507 0.999999962 0.782935935 0.35991865 0.56145155 10.47408867 0 17.29563332 6.123917103 2.68116045 1 0 1 1 0.996666667
accurate inaccurate ADJ ADJ 377 53 7.113207547 0.852065481 0.750249836 0.81572196 0.81572196 0.65017635 0.56794995 5.527614594 25.32097626 25.32097626 4.84975481 2.956447601 1 1 1 1 0.996666667
cream creamy NOUN NOUN 540 74 7.297297297 0.86316204 0.599306801 0.758662117 0.758662117 0.6000559 0.5562466 6.486506939 34.20965958 34.20965958 5.309327602 3.110088825 1 1 1 1 1
eternal eternally ADJ ADV 355 38 9.342105263 0.970444756 0.276856295 0.304612496 0.715238433 0.48295608 0.529075 10.89361286 47.55542755 26.23868179 5.507172108 2.764129877 1 1 1 1 1
taste tasteless VERB ADJ 402 30 13.4 1.127104798 0.402387941 1.000000004 0.733808198 0.3955234 0.30990288 8.631839752 0 35.64149094 6.116044044 3.649265528 1 0 1 1 1
vulnerable invulnerable ADJ ADJ 400 23 17.39130435 1.240332155 0.811461572 1.000000009 0.888015207 0.25314298 0.46685767 5.276731968 0 19.37677956 6.656951427 3.44847703 1 0 1 1 0.996666667
organize reorganize VERB VERB 1118 61 18.32786885 1.263111969 0.869652789 1.000000005 0.771968408 0.48857716 0.39803097 4.147880554 0 25.22073936 6.013104916 3.218162537 1 0 1 1 1
entice enticement VERB NOUN 64 3 21.33333333 1.329058719 0.681762127 0.26792013 0.652533106 0.31264114 0.5677519 5.926108837 51.74614334 25.91586685 5.639873981 2.763174772 1 1 1 1 1
perfect imperfect ADJ ADJ 1131 50 22.62 1.354492601 0.634852777 1.000000024 0.72893664 0.48157975 0.3998459 6.753213406 0 29.32304955 6.424180031 3.022644043 1 0 1 1 0.993333333
practical impractical ADJ ADJ 1228 47 26.12765957 1.417100509 0.761258465 1.000000029 0.879780925 0.28355852 0.29774702 5.865210056 0 21.50602722 7.540131092 3.60287714 1 0 1 1 1
common uncommon ADJ ADJ 3376 114 29.61403509 1.471497587 0.809960027 0.798199116 0.798199116 0.5582302 0.42494074 5.339118481 32.89084244 32.89084244 5.115360737 2.935920238 1 1 1 1 0.996666667
modest immodest ADJ ADJ 521 13 40.07692308 1.602894371 0.59055727 0.999999927 0.584791733 0.1986642 0.2945947 7.766177654 0 27.20295715 5.993225098 3.681729794 1 0 1 1 1
tool retool NOUN VERB 800 10 80 1.903089987 0.603875274 1.000000018 0.595746703 0.15780097 0.06716147 6.324433327 0 58.21119308 8.055106163 4.27487278 1 0 1 1 1
top topless NOUN ADJ 3089 27 114.4074074 2.058454144 0.653141689 0.005902749 0.066670457 0.37071112 0.09676645 6.165837765 103.8796616 92.97896576 6.109016895 4.034013748 1 1 1 1 1
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